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Abstract

This paper develops a new approach to yield curve modelling, solving an-
alytically for bond prices when the short interest rate is a pure jump process
with a rate of jump proportional to the square of an Ornstein-Uhlenbeck pro-
cess. Our approach is best-suited to the problem of pricing short-dated bonds
in markets in which the monetary authorities peg the short-rate, adjusting it

periodically by discrete amounts.
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1 Introduction

1.1 Diffusion Models

Standard models of the yield curve derive bond prices, yields to maturity etc., under
the assumption that the short interest rate is a diffusion process driven by one or
more state variables. Examples are the Vasicek model in which the short interest
rate is an Ornstein-Uhlenbeck process or the Cox-ingersoll-Ross model in which the
short rate follows a square root process.!

Dissatisfaction with the empirical performance of these models has recently en-
couraged research on more general diffusion process models in which short rates are
driven by multiple state variables. Studies of such models include Longstaff and
Schwartz (1992), and Chen and Scott (1993). An empirical study based on a two-
factor version of the Cox-Ingersoll-Ross model by Pearson and Sun (1994) suggests
the model is still easy to reject even with the additional factor, however.

Clear from the empirical literature is the difficulty with which standard diffusion
models fit the time series properties of short interest rates. In estimating square-
root processes for short rates, Gibbons and Ramaswamy (1993) and Pearson and Sun
(1994) find implausibly large rates of reversion to the unconditional mean suggesting

serious misspecification of the stochastic processes.?

1.2 Interest Rate Pegging

In the present paper, we take a rather different approach to modelling the yield curve.
We start from the observation that, in many bond markets, the short rate is a policy

variable, pegged by the authorities and periodically adjusted in a discrete jump. Even

1Gee Vasicek (1977) and Cox, Ingersoll, and Ross (1985). Chan, Karolyi, Longstaff, and Saunders
(1992) provide a useful summary and empirical investigation of nine different one-state variable
models of the short interest rate. In all the models they consider {including the Vasicek and Cox-
Ingersoll-Ross models), the short interest rate is assumed to be a special case of the process: dr, =

(1 (Cg—rt)dt+('3rf‘th where (; i = 1,2, 3,4 are constant parameters and W, is a Brownian motion.
2Ball and Torous (1995) argue that the high estimated reversion rates reflect biases caused by

unit roots in short rate processes. In fact, the Monte Carlos they perform suggest that only a fraction
of the apparent bias can be attributed to possible unit roots.




when the short rate changes continuously over time (like the US Fed funds rate), the
authorities may have a target for the market rate which periodically jumps. Further-
more, central banks typically move interest rates through a sequence of jumps, all in
the same direction. Such interest rate policies have important implications for the
stochastic behaviour of interest rates, particularly at the short end of the yield curve.
First, the presence of jumps makes changes in short market rates highly leptokur-
tic. Second, the autocorrelated nature of jump sizes means the higher conditional
moments including skewness and kurtosis will move around in a predictable fashion.

These observations (which will be further documented below) serve to motivate the
theoretical work reported in this paper. We obtain the conditional density of short
rates and the value of pure discount bonds under the assumption that short rates
follow a pure jump process of which the rate of jump is a function of an Ornstein-
Uhlenbeck process. In a recent paper, Babbs and Webber (1994) advocate modelling
the yield curve in a similar way but ours is the first study to supply analytical solutions

for interest rate densities and bond prices under such an assumption.®

1.3 Other Theoretical Research on Jump Risk

The more common way of introducing jumps into asset pricing models is to suppose
that financial variables such as interest rates or asset values are mixed jump-diffusion
processes. Typically, the jump components are taken to be standard Poisson processes
with constant jump rates. Merton (1976) provided the seminal contribution on option
pricing theory with jump risk while recent work includes Naik and Lee (1990), Bates
(1991), Ahn (1992) and Amin (1993).

There are rather fewer papers that consider the impact of jumps on yield curve
modelling from a theoretical perspective. Ahn and Thompson (1988) extend the
general equilibrium pricing model of Cox, Ingersoll, and Ross (1985) to include jumps
and derive pricing formulae for a simple special case. Shirakawa (1991) extends the

Heath-Jarrow-Morton arbitrage yield curve model by incorporating jumps in forward

3Babbs and Webber (1994) discuss regularity conditions sufficient to ensure the existence of a
pricing kernel in an economy without arbitrage possibilities. The pricing exercises they perform

employ Monte Carlo methods to obtain numerical solutions.



interest rates. We should stress that although similar in that they include jump
components in interest rates, these studies take a very different approach from ours
and that of Babbs and Webber (1994) under which the rate of jump is assumed to

move around stochastically, driven by an exogenous forcing process.

1.4 Structure of the Paper

Section 2 of the paper describes interest rate data from Germany, Sweden and the
United States. We examine features of interest rate distributions and relate them to
the monetary authorities’ use of short interest rate targets. Section 3 describes our
pure jump process model of short rates and demonstrates how one may derive the
path density for such processes. Our technique, which draws on techniques developed
in the physics literature, involves expanding the sample paths of the underlying state
variable (in our case, an Ornstein-Uhlenbeck process), as an infinite sum of sine
functions, using the Karhunen-Loeve Theorem. Given this expansion, we can evaluate
the path density of the jump process as an expectation of a functional of the time path
of the state variable. Section 4 of the paper prices bonds using the path densities.
We show that bond prices are integrals of sine functions weighted by the moments of
a sequence of normally distributed random variables. We also introduce risk aversion

and discuss how to allow for random jump sizes.

2 Interest Rates and Monetary Policy

2.1 Key Rates in Three Markets

In this section, we document the features of short interest rate distributions that
guided us in formulating our analytical yield curve model. In Figures 1 and 2, we
provide data on interest rates from three different money markets, those of Germany,
Sweden and the United States. In each case, the authorities control a key short term
interest rate, thereby aiming to influence the market as a whole.

The key interest rates in Germany and Sweden are ‘repo’ rates, i.e., rates at

which the authorities are willing to enter short-term repurchase agreements for long-



dated government securities. As one may see from Figure la, both key rates are
pure jump processes, varying only through sharp, discontinuous movements. Further
note that (i) the inter-jump times are highly variable, (ii) the signs and magnitudes of
interest rate changes are highly autocorrelated, and (iii) the volatility of rates appears
predictable.

Figure 1a also shows the key US interest rate, the rate on Fed funds. Clearly
market-determined, the Fed funds rate nevertheless appears from the plot to move
in a narrow band around a stable, underlying level which changes periodically. Such
behaviour is consistent with the US authorities’ publicly-acknowledged policy of in-
tervening to keep Fed funds in a band around an implicit target level.*

Figures 1b and lc show the behaviour of German and Swedish 3- and 6-month
deposit rates compared to that of the respective Repo rates. One may chart the mar-
ket’s degree of success in forecasting Repo rate changes as evidenced by prior changes
in deposit rates. For most of 1994, the Swedish market over-reacted, anticipating
larger interest rate increases than actually occurred. In 1993, in both Germany and
Sweden, there were sharp cuts in interest rates that appear to have been completely
unanticipated by market participants. A natural way to think of what is going on
here is that the market is guessing the rate of jump of the key rate controlled by the

authorities.

2.2 Interest Rate Distributions

How much does the distribution of interest rate changes reflect a particular country’s
monetary control arrangements. One might expect that a policy of periodically ad-
justing a pegged short-term rate would generate quite different stochastic behaviour
from a policy of controlling the money supply and leaving the interest rate to market
forces. Figure 2a shows estimated densities for daily changes in German and Swedish
3-month interest rates. The densities depicted are based on non-parametric kernel

estimates.’ For each series, we standardize the data, demeaning and scaling it by the

4For example, for most of 1993, the official target level was 3%.
SThe estimates are calculated using a Gaussian kernel and a window size of 1.06 x

standard deviation/ (sample size/5). For details, see Silverman (1986).



sample standard deviation. This enables us to compare the densities with a standard
normal density also shown in Figure 2a. Evident from the plotted densities is the
unconditional leptokurtosis of the interest rate changes. The Swedish daily interest
rates changes are more fat-tailed than those of Germany, in that their respective kur-
tosis coefficients are 60.8 and 44.9.%5 It is also interesting to note that the German
rate density is tri-modal, reflecting the influence on the distribution of large jumps in
rates.

Figure 2b shows kernel estimates for the densities of US interest rate changes in
the periods (i) January 1980 to September 1983, and (ii) October 1983 to April 1995.
In the earlier period, the Federal Reserve was following a policy of targeting Non-
Borrowed Reserves, effectively a measure of base money, while allowing the market
to determine the Fed funds rate.” In the later period, the Federal Reserve targeted
Borrowed Reserves. Since, these latter are directly proportional to the Fed funds rate,
this policy effectively meant targeting interest rates.

The density for the earlier period corresponds reasonably closely to that of the
normal distribution also shown in the figure. It is interesting to note that the kurtosis
for the early period was just 6.3. While this probably represents a statistically signif-
icant deviation from the kurtosis of a normally distributed random variable, it is far
less than the sample kurtosis of 13.2 that we calculate from the data after October
1983. Finally, the density for US data from the later period exhibits the same kind
of tri-modal configuration commented on in the case of Germany above. Once again,

sharp and comparatively large interest rates adjustments seem to account for this.

6Recall that the kurtosis coefficient, defined as the ratio of the fourth central moment to the
square of the second, is 3 for a normally distributed random variable. The sample periods for the
kurtosis calculations are 20/11/92 to 23/8/96 for the Swedish rate changes (the former date being

subsequent to the floating of the Swedish Krone) and 1/1/80 to 23/8/96 for German rates.
"Even in this period, it should be noted, the US authorities adjusted their Non-Borrowed Reserve

target in part to take account of interest rate developments, so interest rates remained to some extent

a target variable.



3 The Model

3.1 Short Rates and Their Time Path Densities

Informed by our examination of the nature of interest rate distributions, we now de-
velop a new theoretical approach to modelling short rates. Let r; be the instantaneous

interest rate. Assume 7 is a doubly stochastic Poisson process with rate of jump:

(X)) = BXY, (1)

where X; is a diffusion process, § is a constant, and where the jumps are of known
size §,, for jumps n = 1,2,...,00. (We shall relax the assumption that the jump sizes

are known below.) Let X; be an Orstein-Uhlenbeck process:
dX; = a (0 — X)) dt + odW,, (2)

where W, is a standard Brownian motion, a, o, and # are constant parameters, and
a, o > 0.
We wish to derive bond prices under these assumptions. If agents are risk neutral,

the price at time  of a pure discount bond yielding $1 at T' can be written:

Pr=E, [exp (— [t ! T.rdT)] . 3)

To evaluate such expectations, we need to derive the probability density, conditional
on information at ¢, of the path of r, up to a future date, 7. We normalize our choice
" of time units so that t=0and T = 1.

Conditional on the time path followed by the forcing process, X, ry is a Poisson
process. Hence, (see Snyder and Miller (1991), page 358), the sample or time path

density may be expressed as:

pIN#):0< 7 <1]=E [exp (— /01 {7, X(1))dr + fol 1n7(T,X('r))dN('r))] . (4)

In this context, the sample path density may be thought of as the joint density of
the number of jumps and the times that they occur. Most of the work in this paper
consists of evaluating equation (4) and hence obtaining the path density. Knowing
this density permits us to evaluate not just bond prices but also the values of many

other bond and interest rate derivatives.



3.2 A Series Representation for the State Variable

To solve (4), we apply an approach developed by Macchi (1971) for modelling the
emission of light photons.® The first step is to express the Ornstein-Uhlenbeck driv-
ing process, X;, as an infinite weighted sum of orthogonal functions of time. The
orthogonality property of the representation will facilitate solution of equation (4).
We state the representation, which is an application of the Karhunen-Loeve Theorem,
in the form of a proposition. Proofs for this and subsequent results are provided in

the Appendix.

Proposition 1 By the Karhunen-Loeve Theorem, Xy can be written as:
Xe= zupalt) for te[0,1], (5)
n=1

where the $a(t) for t € [0,1] are functions of the form:

2sin(wsT)

¢'n T)= . 6
7) V2 — sin(2w,) fun ©)

Here, the wy,ws,ws ... are the positive roots of the equation,

200wy, N (exp[—uo.f +iwn) ~1  expl—o— twy] — 1) ' (M)

w? 4 o o —a + w, — — Wy,
The x,, are real-valued, normally distributed independent random variables with vari-

ances, v2 = o2/(w? + o?) while the means, my, = Eoxy, are given by:

_1elX0=0) f el al(arsin(un) + e cos(en)} + B2 — cos(wa), (8

n
w% + a? Wy

where 1, = 2/\/2 — sin(2wn ) /Wy .

8Discussion of these techniques may be found in Daley and Vere-Jones {1988) and Snyder and
Miller (1991). The physics applications are generally concerned with the unconditional representation
of Gaussian processes in some time interval [0, 1]. In other words, the stochastic behaviour of X for
t € [0,1] is studied assuming that Xo is a draw from the unconditional distribution of the level of
the process. This leads to a different eigenfunction expansion from that given in Proposition 1 since
the boundary conditions satisfied by the eigenfunctions differ from those thatgapply if the analysis
is conducted conditional on Xj.




An important issue here is the magnitude of the errors introduced if one truncates
the infinite sum in equation (5) at some finite number, N. Any practical exercise
using the Karhunen-Loeve expansion will, of course, require such a truncation. To
approximate the actual sample paths of the Ornstein-Uhlenbeck process accurately
would require a large number of terms in the expansion as the process sample paths
are of infinite variation while the eigenfunctions are smooth. However, since we wish
to employ the expansion ultimately to calculate an expectation of a functional of the
future time path of the process (i.e., the functional appearing in equation (4)), more
important is the degree to which we can approximate the conditional moments of X;.

Figure 3 shows the conditional mean and variance of X; calculated using the exact
formulae for these moments (denoted ‘true value’ in the figure) and approximations
based on a truncated version of the infinite sum in equation (5). The truncations
range from a single ¢, function to 100 terms. The calculation is carried out for an
Ornstein-Uhlenbeck process with parameters, 8 = 8, a = 0.4, § = 0.8, Xo = 0.6,
§ = —0.005, and o = 0.3. As one may see, the main source of potential problems is
the mean approximation. The eigenfunctions are sine functions and hence all equal

zero at t = 0, whereas the true conditional mean,
mey = Eo(Xy) = 6+exp[—oat](Xo—0) for t€0,4], (9)

is strictly positive at ¢ = 0. As one adds eigenfunctions, the approximation to mq,
improves in a mean square sense, but convergence is relatively slow. The next propo-
sition gives a simple modification of the series expansion that perfectly matches the
conditional mean for all truncations and which fits the conditional variance just as

well as the expansion in Proposition 1.

Proposition 2 Consider the process, Xt(m , defined by:

X = godolt) + fj:c,,cﬁn(t) for te€(0,1], (10)
n=1

where z, and ¢u(t) for n = 1,2,... are defined as in Proposition 1, and where:

$(t)

IO 11
Vo $(s)ds -

$o(t)



w0 = [ " (s)2ds (12)

N

WO = mos= ) [( / 1 mg,sqﬁan(s)ds) ¢n(t)]. (13)
For all N >1 andt € [0,1],
Eo (Xt(N)) = Mog (14)
N
Varo (X{) = Varg (zzjl znqbn(t)) , (15)

i.e., the conditional mean of X}N) ezactly matches that of X;, while the conditional

variance of Xt(N) equals that of the expansion appearing in Proposition 1, truncated

at N eigenfunctions.

Adding the extra eigenfunction does not affect the conditional variance since it is
multiplied by a deterministic quantity, zo, however, it dramatically improves the
approximation to the mean by adding the mean function less its projection on the
N first eigenfunctions. Using the modified projection of Proposition 2, the variance
approximations are as they appear in Figure 3b while the mean is perfectly fitted.
As a Gaussian process, the conditional distribution of X; at ¢t = 0 is completely
characterised by its conditional mean and variance. Hence, we may conclude that the

higher moments of the conditional distributions are well fitted.

3.3 The Time Path Density for Interest Rates

The orthogonality properties of the Karhunen-Loeve representation enable one to

write the expectation in equation (4) in the following simple form:

p[N(1):0< < 1] = Eo [exp [—ﬁfj 22 + fo In ﬁX(T)ZdN(T)” . (16)

s=1

where N(7) is the counting process associated with the Poisson process. Evaluating

equation (16), we obtain the following result.
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Proposition 8 If the jump times are denoted ¢1, is, i3,

L]

[o5] [+ L
p[N(r):0<7<1] = a + 3, B° > az(j, k) [ I #: (t)ér(81), (17)
L=1 jl, .jL _ J==1
ki,..kp=1

where:
w = B {exp [—ﬁfzﬁﬂ (18)
aGiR) = II Bo[omrexp [-853]], (19)

where § = (j1,...j) and k = (kiy,...kr) are L-dimensional permutations of the pos-
itive integers and where p, = pa(j, k) is the totel number of elements in the two
permutations that equal n. The evaluation of the ar(j, k) is somewhat involved and

is described in detail in the Appendiz.

Proposition 3 gives the path density for the jump process followed by the short in-
terest rate. Since the jump sizes are assumed to be known, the sample path density
may be thought of as the joint density of the number of jumps and the individual
jump times. Integrating over the jump times yields the probabilities associated with
different numbers of jumnps between times § and 1. Though complicated, the density
is reasonably straightforward to compute. To verify our analytical solution, we simu-
Jated the jump process and estimated the probabilities of different numbers of jumps
by Monte Carlo. Employing 200,000 replications with 500 time steps between 0 and
1 and reducing the variance of the Monte Carlo estimates using antithetic variate
techniques, we found the probablities were extremely close to those implied by our
analytic path densities. Software to perform these calculations is available from the

authors on request.
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4 Bond Prices

4.1 Bond Pricing with Known Jump Size

In this section, we describe how one may calculate bond prices using the path density
derived in Proposition 3. Recall that this involves evaluating the expectation in
equation (3). For the moment, we shall maintain our assumption that the jump sizes,
6;, 7 =1,2,...,00, are known constants. At any time, ¢, the level of interest rates,

7+, Tnay be written as:
N(t)

=T+ E 5_1', (20)
i=1
where N(t) is the number of jumps up to and including time i. The integral in

equation (3) for t =0 and T = 1, can then be written:

1 N{1)
j{; rods = roty +{ro+61)(ta—t1)+ (ro+ 81 +62) (I3 —12) +. . . + (T‘o + Z 5j) (1—tney)-

- (21)

Cancelling terms, one may then write the bond price as:

N(1)
Pg,l = Eg {exp (—T‘o - Z 5_7(1 -—*tj))} . (22)

Evaluating this expectation, we have:

Proposition 4 For known jumps sizes, 65, j = 1,2,...c0, the price att =0 of a

pure discount bond maturing at time t =1 is:

oo o0 1.
Pos = oexpl-re +expl-ro] L8 X aGik) [ dialm)  (23)
B =1
k1, kL S 1

X y,1(T1) [[: $i22(T2)Brs 2(72) [ : [ 1

TL=1

where q'éj,n('r) = exp|—da.(1 — 7)/2]é;(7).

q“s,-L,L(TL)q"EkL,L(TL)dTL] ] d’rg] dry, (24)
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The expression for the bond price may appear complicated and the number of terms in
the infinite sums computationally costly to calculate. However, an important feature
of the Karnunen-Loeve expansion is that, as we noted in Section (3.2), the rate of
convergence of the series expansion is very rapid. Hence, it is necessary to calculate
only a very small fraction of the various permutations of positive integers in equation
(23) in order to reach reasonable levels of accuracy.

The algorithm we developed to calculate bond prices is described in the Appendix.
We checked the accuracy of the algorithm using Monte Carlos. For typical short
bond valuations, the Monte Carlos required several minutes of CPU time on a 100
Mhz Pentium computer to achieve acceptable accuracy. Evaluation of our analytic
expressions was much quicker and rarely exceeded a minute. Software to perform
such calculations is available on request from the authors.

Figure 4 shows yield curves for short bonds implied by our model, calculated for
different value of the initial level of the state variable, X,. The jump sizes assumed
are -1/2% so the yield curves are downward sloping. The rate of reversion, a, of the
X, process to its unconditional mean, 8, is relatively slow so Xo has a sizeable inpact
on the expected number of jumps over the period 0 to 1. Figure 5 shows yield curves
for a single value of X but for different levels of o. As o becomes small, bond yields
approach those that would apply if the short rate were a Poisson process, i.e., with

known but time-varying jump rate.

4.2 Risk Aversion

In this section, we sketch how one may generalise our bond pricing formula to the
case in which agents are risk averse. This involves a simple application of change of
measure arguments. Under weak conditions in the absense of arbitrage opportunities,
Harrison and Kreps (1979) show that there exists a random variable, g, such that the
price at t = 0, IIo(Z), of an asset that pays a random amount Z at time t = 1 may
be expressed as:

y(Z2) = FEolgZ). (25)

In this context, g is referred to as a pricing kernel. Under risk neutrality, ¢ =

ex bt rsas| where r; 18 e short-term interest rate. e11ce, e value O a pure
p |— Jo rsds| wh is the short-term interest rate. H the value of

13




discount bond which pays one dollar at time 1 is Eo (exp [— fol r,ds]) , similar to the
expression in equation (3). One may easily show that if ¢ = exp [— I r,ds], all assets
must grow on average at a proportional rate r;, whence the term risk neutral.
Suppose that interest rates follow the jump process hypothesised in equations (1)
and (2), but that the pricing kernel q is more general. In particular, assume that the

pricing kernel, ¢, is equal to:

1 1 1
g = exp [——j; rsds] exp [fo (l—mh)ﬁdes+/0 Iog(nls)dN,]
1 1
X exp [fo Ko dW -—/ n§5/2ds] . (26)
0

where &;; for 7 = 1,2 are non-negative, predictable processes, Ny is the counter for the
doubly stochastic Poisson process described in equations (1) and (2) and W, is the
Brownian motion that appears in equation (2). Subject to regularity conditions (see
Bremaud (1981) Theorem 3, Chapter 6, and Lipster and Shiryayev (1977) Section
6.3) the price at ¢ = 0 of a discount bond paying off at t =1 is:

Py, = E; [exp (— ft i rsds) ] . @7

where E2(.) is the expectations operator associated with risk-adjusted or ‘risk-neutral’
probabilities. Under these risk-neutral probabilities, the short interest rate, ¢, is a

point process with rate of jump £1:8X7? and the process X; follows the process:
dXt = a(ﬁ - Xt)dt + thO'dt + O'dm, (28)

where W, is a Brownian motion. With this more general pricing kernel, asset prices

will not grow at a proportional rate equal to the safe instant rate.

4.3 Bond Pricing with Stochastic Jump Sizes

An important simplifying assumption maintained up to this point is that the jump
sizes are of known magnitude. Clearly, this assumption is extremely strong.® In this

section, we discuss various ways in which it may be relaxed.

91t is the assumption followed by several significant papers in the literature including Ahn and

Thompson (1988) in their extension of the Cox-Ingersoll-Ross model to include jumps.
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One possibility would be to incorporate random jump sizes distributed indepen-
dently for different jumps. In general, this has been the approach taken in the finance
literature when jump components have been included in pricing models (see Merton
(1976), Bates (1991), and Ho, Perraudin, and Sorensen (1996} for three examples
among rmany).

However, even cursory inspection of the data reveals that successive jump changes
in short interest rate changes are highly serially correlated. In general, central banks
push interest rates in one direction over a period of time before eventually reversing
the movement. In what follows, we shall capture this type of behaviour by supposing
that the size of the jump is the current level of an arithmetic Brownian motion that
evolves over time.

The advantages of this assumption are (i) that successive jump magnitudes are
highly correlated, especially if they occur close together in time, and (ii) that jump
sizes can be either positive or negative. Possible limitations of our approach include
the fact that we shall assume that jump magnitudes are independent of jump times'®
and that jump sizes (and, indeed, jump times) are taken to be independent of the
level of interest rates.!!

The last and perhaps most serious limitation with this approach is that it implies
that financial market participants know the size of an interest rate change should
one occur in the next instant of time. In other words, the jump magnitude is in-
stantaneously predictable. This is obviously not consistent with reality but appears
to be a reasonable simplifying assumption given the other advantages of this kind of
specification.

Let us state the pricing result with random jumps sizes as a proposition:

Proposition 5 Suppose that, conditional on the jump times, t1,1s,..., the jump sizes
equal the contemporaneous levels of an arithmetic Brownian motion, Zy, with drift i
and instantaneous standard deviation, &, i.e., §; = Zy; for 3 = 1,2,...,00, where

7, is independent of the jump realizations and of the state variable, X;. Then, bond

107 fact, this seems a reasonably innocuous assumption as there is unlikely to be much dependable

stucture in the correlation of jump times and magnitudes.
11Babbs and Webber (1994) suggest that the interest rate level could be an important determinant

of the stochastic nature of jumps.
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prices are:

00 L ©0 . 1 prl 1
P = agexp[—ro]-i-exp[urg]l’zr;lﬁ | Z a(7, k)fo j;l .../;L_l
Jiyegrn =1
oy, o op, =
L L L 2
X exp (E fmZo) exp (}:1 (IZ 51) (& — &im1) + (IE Et) & (& — §i~1)/2)
X iy (1) Bk (1) B3 (T2)bra(72) - . B3, (71) Bay (1) drp . - . drpdry. (29)

where £, =7 — 1.

5 Conclusion

This paper has developed a new analytical framework for studying fixed income se-
curities. Specifically, we suppose that the instantaneous interest rate is a pure jump
process, periodically adjusted by monetary authorities. These assumptions are de-
signed to capture features of the monetary policy arrangements operafed by such
countries as Germany, Sweden and the United Kingdom. As we argue in the Intro-
duction, our model may also be applicable to United States interest rates, especially
in periods in which the Federal Reserves has targeted particular level for the Fed
funds rate.

In general, we think it is interesting to study ways in which the monetary arrange-
ments employed in different countries affect the behaviour of their domestic interest
rates. Such ‘market microstructure’ approaches to the study of monetary policy and
the yield curve have been relatively little explored. Recent papers that have examined
the broader implications of specific aspects of central bank behaviour are Balduzzi,
Bertola, and Foresi (1993) and Vitale (1996).

In future work, we plan to implement our model empirically. Our framework is
capable of mimiking generally recognised features of short interest rate and bond
yield distributions including extreme unconditional leptokurtosis, and predictable
time variation in the second and higher moments. It, therefore, seems well-suited

for empirical applications.?

12For example, there has been much recent interest in using yield curve models to infer market
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APPENDIX

This Appendix provides reasonably full and self-contained derivations of the results de-
scribed in the text. Let r: be the short interest rate and assume that r; follows a pure jump

process with rate of jump:
7(Xe) = BXE, (30)

where X, is a diffusion process and where the jumps are of known size &, for jumps n =
1,2,...,00. Let:
dXt = (9 - Xt) dt + O'th, (31)

where dW; is a standard Brownian motion increment and ¢, o, and 8 are constant parame-
ters, and @, ¢ > 0. We wish to derive the probability density, conditional on information at
to, of the path of r; up to a future date, ¢;, under these assumptions. Normalize our choice
of time units so that {g =0 and {1 = 1.

Conditional on the time path followed by the forcing process, X, r¢ is a Poisson process.
Hence, the sample path density conditional on information at t = 0, p, may be expressed

as:

p[N({) :0< < 1]=Ey [exp (— fo L olr X (1)) dr + fo ' ln‘y(T,X(-r))dN,-)] . (32)

Most of the derivation consists of evaluating this expectation. To calculate the expectation,

it is convenient to express X; in terms of a Karhunen-Loeve expansion.

Proof of Proposition 1
Derivation of the Time Path Density
As an Ornstein-Uhlenbeck process, X; can be written as:
Xi=0+4+exp[-at](Xo—0)+0o /: exp [—af(t — 7)] dWr = mo + €04, (33)

where mg; = 0 + exp [—at] (Xo — §). We note that:

K(r,u) = K(r — u) = Ey[eo re0,4) = % (exp [~a|r - u|] — exp[—a(T + u)]). (34)

expectations of future interest rates, inflation and monetary policy (see, for example, Dahlquist and
Svensson (1994)). Implementing our model on time series of bond prices, one may invert the pricing
formulae to obtain estimates of the market’s view of the likelihood of interest rate changes.
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By the Karhunen-Loeve Theorem, X; can be expressed as:

= i Zndn (t) for tel0,1], (35)

n=1
where the z,, are independent random variables distributed normally with means m, and
variance vn. The ¢, (t) for t € [0,1] are the eigenfunctions of the covariance function for

the stochastic process X;.

Evaluating the Eigenfunctions
To determine the eigenfunctions, one must solve the integral equation:
M) = [ Krw)ala)d (36)
= f "K (1-, u) Po(u)du + .[r ' K (1, u)dn(u)du (37)
= f = (exp[ a(r - )] - exp[-a(r + w)]) u(u)du

-|-f (exp[—a(u — 7)] — exp[—a(T + u)]) da(u)du. (38)

The two terms on the right-hand-side of equation (36), come from the fact that we have an
absolute value operator in the Ornstein-Uhlenbeck covariance function K (r,u). Here, the

A, 1 = 1...00 are eigenvalues yet to be determined. Taking derivatives yields:
Sadi(r) = —a [ (expl-odr - ] — expl-alr + u)]) un(w)d
va [ (el-atu -+ expl-alr + ) gulwdn. (39)
where A, = M\,20/c?. Differentiating again yields:
And2(7) = Ane?a(7) — (1 — exp[-2a7)) $n(r) — (1 + exp[-2er]} u(r).  (40)

Therefore:

2
"(r) + [.—"5 - az} bn(7) =0 (41)
An
The general solution to this equation is:
$n{T) = A1 nexp liwnT]+ Agnexp [—iwnT], (42)
where:
20 : R Qo
= | 2= - a? i ) = | = —_ = e
Wy = [.n o ] ie.  An {20 + 2] oI 1o (43)



To see this, take derivatives of equation (42) and substitute into equation (41} to obtain:

Ain ((iw)2 + wz) exp [twnT) + A25 ((——i.:‘.))2 +w2) exp [—iwn ] = 0. (44)

Boundary Conditions

The integral equation effectively imposes boundary conditions on the solution to the differ-
ential equation. Since K(0,u) = K(7,0) = 0 foralli 7,2 20, $(0) =0forn=12,...
Hence, A1 n = —Asn forn=1,2,.... Let A, = A . Substituting ¢, (r) = Ay (expliwr] —

exp[—iwy,7]) into equation (39), we obtain:
Jndl(r) = MnAniwn (expliwa7] + expl-iwT]) (45)
= —o f (exp[—a(r — u)] — exp[—a(T + u)]) An (exp[iwnu] — exp[—iwnu]) du +

0
1
o / (exp[—a(u — )] + exp[—o(T + u)]) An (expliwnu] — exp[—iwnu]) du.(46)
T

Evaluating at 7 = 0 gives

WpAni, = Ao [0 1 (exp[~ o] + exp[—ou]) (expliwnu] —~ exp[—iwau]) du  (47)

— Al (exp[—o:+ z'.wn] —1 exp[-a- z"wn] - 1) . (48)
— + Wy — — Wy
_ Multiplying both sides by A7, where the asterisk indicates the complex conjugate, we obtain
an implicit equation in w:
2aiw
w? + a?

— 20iS { exp[—a +iw} -1 }

—a+ iw (49)
where & denotes the imaginary part of a complex number. One may show that equation
(49) has countable roots, wy,wy,ws, . .. which can be found numerically with little difficulty
using grid search methods.

To find A, one may employ the normalization:

/ ' bn(T)PL(r)dr = AnAL f ' (expliw, 7] — exp[—iwnT]) (exp[—iwn 7] — expliw, T]) dT
0 0

1
= AnA, f 4 sin®(w,T)dr (50)
0
= AuAT (2 - i‘nﬁ‘i’ﬁ) -1 (51)
Wy
Letting An = —i/1/2 — Sin(2wn) /Wy, we finally obtain the real-valued function:
2sin(wnT)
(1) = _ 52
¢a(7) V2 —sin(2w) /wn (52)
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The Ornstein-Uhlenbeck process, X;, can then be written as:

Xi= 3" oadalt) (53)

n=1

where the z,, are independent, real-valued, normally distributed random variables satisfying:

By = fo " X, (r)dr. (54)

Determining the z, Means and Variances

The means of the 2, take the form:

B = [ Eo(Xr)éu(r)ir (55)
= /0 "0+ (Xo — 8) expl—ar]) dn(r)dr (56)
= [1“5:7’1 cos(ws) + Y (Xo — 9)9&’%(—asin(wns) ~ Wn cos(wns))]: (87)
= (1 - cos(un) + ﬂ%?f(—i—;ﬁ (19n — expl—a] (asin(wn) + w cos(wn))) (58)

where 7, = —=—=2—-—==, To evaluate the variances, we simply note that:
2/ 2—sin(2wa) fun

$ 3 Eo(en — ma) (z5 — mi)du@)5(r) (59)

n=1 J=1

= f: Var(zn)én (£) ¢n{T). (60)

n=1

Eo {(X () — mo,) (X () — mo,r}

Multiplying both sides by ¢, (7), integrating over r on [0, 1] and using the integral equation,
(36) shows that Var(z,) = An. This completes the proof of Proposition 1. O

Proof of Proposition 2

The idea of the additional eigenfunction, @o(t), is sketched in the text. The equality of the

conditional means and variances is straightforward to show. 0

Proof of Proposition 3

Path Densities for the Jump Process
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The orthogonality of the Karhuenen-Loeve representation means that:
p[N(r):0< 1< 1)=Ep [exp [ ﬂzx +f lnﬁx(r)2dN(-r)H (61)
Let py = p[N(r) : 0 £ 7 < 1|N(1) = L] x Probp{N(1) = L} for L = 1,2,3,... and
po = Probo{N(1) = 0}. Then, p = Y72, pr. is the total path density. Here,
p[N(r):0<r<1] = E (ﬁ exp [—ﬁmg]) . (62)
n=1

For N(1) = L > 1 with jump times t;, tg, ..., 2L

pL[N(7): 07 <1] = ﬁLEo[ (£1)*X (t2)*.- X (t2) eXp[ ﬁZ-’”H

= gr ST ar(k) H b, (t1) by (81) (63)
Juyeedn=1 =
ki,..kp =1

where:

[se] o0
ap{(j, k) = Eo | 25,% j T, Ty Ty oo Thy EXD [«-ﬁ Emi” =[] Eo [mﬁn exp [“ﬁmiﬂ , (64)

s=1 n=1

where j = (j1,...j1) and k = (ky,...ky) are L-dimensional permutations of the positive
integers and py, is the total number of elements in a given pair of permutaions, j and k,

equal to n.

Evaluating the Higher Moments of the z;

We wish to evaluate:

Ey [mﬁ exp [—ﬁmﬁ]] = \/2?)\— m“’ e:np ﬁmi] exp [— (—wu—z—iﬁ‘—)—] da,

(28 nz2 + 22 —2muz, +m )
_ P n
,._.2?1_ =/ mn exp \: W (65)
2mnyn
_ 1 / ot ¥h exp 2ﬁ,\n+1)§ dy

V2T @B+ 1) J=o0 (2820 + 1)% b

where;
Yo = (2000 + 1) 12, (66)
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Completing the square gives:

2 _ _ 2mayn m2
Nl JIREEE O G T .
2 AL (287, + 1)2# e 177 o

_ma (i 1 __Bolh) | Bmn
e"p{ 2 (1 2ﬁ,\n+1)”dy"‘(gg,\nﬂ)-";‘—ie"p[ (2ﬂ>\n+1)}’ (68)

where the y, are independent for all n and are distributed as

n ~ N —-v—n}-II——T,An =N n,)\n.
’ ((2ﬁAn+ 1 ) (om0 o

To evaluate Eg[y?], we use the binomial theorem and the fact that:

k

Bofyn — ma]t = {A,% (k=1)(k—3)8-1 keven _ (70
0 k odd.

This completes the proof of Proposition 3. O

Proof of Proposition 4

For known jumps sizes, §;, j = 1,2,...00, the price at t = 0 of a pure discount bond

maturing at time ¢ = 1 is:

Poy = agexp[—rol+ Li::lﬁr, {-/: [rl .. ,[ri_l {exp [—ro - i 8s(1 = ‘r{l (71)

1 =1

o {
Z ar(d, k) H i (Trm) Pim (Tm)} dridry. .. dTL}

yedr=1 e
ki,..kr =1
oo o0
= @agexp[—ro} + exp[—ro] Z g E ar(j, k) (72)
b=t Jyedr=1
ki,...kp =1

L
X fol ./: T [ri H [exp[6mTm]Bsm (Tm) bim (Ti)] dnrdrs .. . drL. (73)

=l m=1

Rearranging the order of summation and defining: &;(r;) = exp[—6;(1 — ;)}/21p;i(3) , we

obtain the expression given in Proposition 4. This completes the proof of Proposition 4. O
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Proof of Proposition 5

Suppose that the jump sizes equal the contemporaneous levels of an arithmetic Brownian
motion, Z;, with drift 7 and instantaneous standard deviation, &, ie., §; = Z;; for j =
1,2,...,00, and jump times, t;, where Z; is independent of the jump realizations and of the
state variable, X;. Given the independence of Z; both from the jump process realization and

from X;, we can derive bond prices by initially conditioning on the jump times, evaluating

L
Eq lexp (E &(ti — 1))

i=1

the expression:

tl,tz,ta,...] , (74)

and then integrating over the density of jump time density obtained in Proposition 3.
Note that, for any constant ¢ and normally-distributed random variable with mean j

and variance &2

Bo (exp(€2)) = exp (63 + 50°) (75)
If the jump size process is represented by the Brownian motion, Z3, described above, then
§;+1 = Zy,, is distributed normally with mean Zy; + fi(ti41 — ;) and variance 7 (tip1 — ).

Now, define £ = t; — 1. Then, the expression in equation (41) is equal to:

N N-1
Eq {exp (E 8: (8 — 1)) 01,80...0N-1; t,'Vi} X exp (Z 5;&) (76)
=1 i=1
2
X exp (‘fN(éN—l + AN — En-1)) + E—g'&z(fN - EN—l)) ' (77)

since &y conditional on §y—y has mean: dy_1 + E(§n — En—1) and variance F2En — En—1).
We now wish to evaluate the expression:

N
Eo [exp (Z & (t; — 1)) d1,62...0N-2; t,-Vi] . (78)
i=1
We have
N—-2 Ez
exp (E 8:i&i +EnE(En — EN—-I)) X exp ("2&52 (v — EN—1)) X {79)
i=1

exp((€n +En-1)*(On—2 + (€N—1 — En-2))) X exp ((—Eﬁ—tg-v"—i)iﬁz(&vﬂ - fN—z)) , (80)

and so on until we obtain the term in the second line of equation (29). This completes the

proof of Proposition 5. O
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Notes on the Bond Pricing Algorithm

The algorithm has two main parts. The first calculates the permutations and the corre-

sponding moment coefficients, a(7, k). The second performs the numerical integrations.

The Permutation and Moment Calculation Section

The number of permutations grows extremely rapidly as L increases. For example, if one
truncates at n = 10 eigenfunctions, and if the parameters are consistent with an average
of five jumps a year, there is significant probability weight (by which we mean probability
weight exceeding 1e-5) up to the fifteenth jump, implying 1.3e4-26 permutations.

Three facts are helpful in dealing with the large number of permutation. First, the
order of the eigenfunctions, ¢;,(7), ¢k, (7), where j, and k, are corresponding elements of
two permutations (J, k), does not matter. This reduces the number of integrations we need
to perform as we may weight each a(j, k) by the number of times it can occur (i.e., by 2 for
each n such that 7, 5 ky).

Second, the series expansion implies a relatively high rate of convergence so there are
few permutations for which the corresponding a{7, k&) is non-negligible. We retain permu-
tations which satisfy the following criteria. For the zero and one jump cases, we evaluate
all the permutations using ten eigenfunctions. For the two jump case, we disregard any
permutation for which the a(7, k)’s are below a prespecified tolerance level again using ten
eigenfunctions. For numbers of jumps greater than two, we retain permutations that only
involve the first two eigenfunctions and which satisfy the tolerance level. It is important to
verify that the cumulative distribution is close to unity.

Third, for short maturity bonds, one can reach satisfactory accuracy (in that prices
equal those calculated with extremely lengthy Monte Carlo) using all permutations of the
first two eigenfunctions. This is particularly the case when the average frequency of jumps

is low.

The Numerical Integration Section

Having selected permutations as described above, we must evaluate the corresponding nu-
merical integrals. Dividing the interval [0, 1] into a series of subintervals, we employ the
composite trapezoidal rule, taking the average of the function evaluated at the upper and

lower bounds of each step.
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To improve the accuracy of the numerical integrations, it is important to space the
points in the time grid unevenly, with much finer spacing close to 0. This is because the

first eigenfunction is rapidly declining in this region but is much flatter for higher values of

its argument.
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Figure la. Key rates
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Figure 2a. Standardized 3—Month Rate Distributions

-30 =24 -18 —-1.2

o
o
— A —— Sweden 1992 io 1998 E
1 - ~- Germany 1980 to 1996
1 ‘l --------- Normal distribution
i)
o .
:;:}d
4]
o
o © |
5, O
o
2
v .
0o
N -
o
-30 =24 -18 -1.2 -0.86 0.0 0.4 08 1.2 1.8 20 2.4 2.8
Units of standard deviation
Figure 2b. Standardized US 3—Month Rate Distributions
ol
-
= —=Jan 1980 to Sep 1983 .
—-=-0ct 1983 to Aug 1996
"\ --------- Normal distribution
o i
S of
-
[
o
o © ]
o @
=
0
5 <
oo
(\! .
o

1 L L

—-0.6 0.0 0.4 08 1.2 1.6 20 24 238

Units of standard deviation




Figure 3a. Conditional Mean for N Eigenfunctions
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